
Zooming

The order in which a sequence of coordinate changes takes places is important. Here, for example, is what
happens for each of these sequences:

30 rotate

1 1.5 scale

newpath

0.5 square

stroke

1 1.5 scale

30 rotate

newpath

0.5 square

stroke

The point to keep in mind is that after a coordinate change is made, all further coordinate changes take place
with respect to that new system. Thus, in scaling a circle becomes an ellipse, and rotation takes place around this
ellipse instead of around a circle. We can see what happens by doing it in stages:

To see a useful application of this idea, let’s construct a procedure zoom which has the effect of zooming in at a
point by a given scale. In other words, the original page and the zoomed one look like this

abc

abc



Zooming 2

if we zoom into the centre of the square with a zoom factor of two.

How can we do this? We shall see more generally how to construct a sequence of commands that have this effect:
the point that is located at (x, y) in the following drawing is drawn at the new location (cx, cy) instead, and the
figure is in addition scaled by a factor of s. The sequence of commands we need here is

cx cy translate

s dup scale

x neg y neg translate

followed by the original drawing commands.

We can see how this works by tracking the effect line by line. In this picture, the point marked focus is at (x, y).
It will be relocated at the new location (cx, cy), scaled by a certain factor s. The origin is also indicated. The four
figures show the effect after none, one, two, and all three of the above lines are executed.

focus

origin

new location

focus

origin

new location

focus

origin

new location

focus

origin

new location

If you want to rotate the figure with the focus as the pivot, then add the correct line as here:



Zooming 3

cx cy translate

20 rotate

s dup scale

x neg y neg translate

focus

origin

new location

A useful procedure
% [cx cy] [x y] s: the place that is now (x, y) is located at [cx cy]

% and lengths scaled by s

/zoom {

8 dict begin

/s exch def

aload pop

/y exch def

/x exch def

aload pop

translate

s dup scale

x neg y neg translate

currentlinewidth s div setlinewidth

end

} def

Finding the centre

Very often you want to make the new location (cx, cy) equal to the centre of the page. How do you find it? We
assume, as usual, a page 8.5′′ × 11′′. The problem is to find the coordinates in the current coordinate system
of the centre of the page. This means we have to use the affine transformation from page coordinates to user
coordinates, as we did when drawing complete lines. In addition we have to apply various transformations to
certain points. The command transform is applied when a matrix (in PostScript’s sense) and two coordinates
are on the stack. It leaves on the stack the effect of applying the matrix to the point, another pair of coordinates.
Similarly itransform applies the inverse transform. So here is a procedure which returns as an array of two
elements the centre of the page in user coordinates:



Zooming 4

/page-centre {

[

4.25 72 mul 5.5 72 mul

matrix defaultmatrix transform

matrix currentmatrix itransform

]

} def

In effect, we are transforming the centre first from page to physical coordinates and then back to user coordinates.

Playing around

Try this:

%!

(zoom.inc) run

% defines zoom

/draw {

gsave

1 0 0 setrgbcolor

newpath

x y moveto

-100 0 rlineto

200 0 rlineto

x y moveto

0 -100 rlineto

0 200 rlineto

stroke

grestore

x y moveto

(Euclid) show

} def

/Helvetica-Bold findfont

25 scalefont

setfont

/s 1 def

/x 100 def

/y 100 def

{ gsave

[x y] [x y] s zoom

draw

grestore

/s s 1.1 mul def

showpage

} loop

How would you get the text to rotate around the focus as the loop proceeds?


