
Chapter 3. Evolution of a program

One rule for happy PostScript programming is to first get a simple picture up on the screen that comes somewhere
close to what you want, and then refine it and add to it until it is exactly what you want. Keep in mind that
debugging large chunks of PostScript all at once is extremely painful.

Another thing to keep in mind as you develop programs is flexibility. Ask yourself frequently: can you reuse in
another drawing what you are doing in this one?

In this Chapter I shall show how one PostScript program evolves according to this process. Technically, the main
ingredients we are going to add to our tool kit are variables and procedures.

1. Drawing a square on a page

The following program draws a square one inch on a side roughly in the middle of a page.

%!

72 72 scale

4.25 5.5 translate

0.012 setlinewidth

newpath

0 0 moveto

1 0 rlineto

0 1 rlineto

-1 0 rlineto

closepath

stroke

showpage

The page looks like this:

This program is extremely simple, and not very interesting. Among other things, it is not very flexible.



Evolution of a program 2

Suppose you wanted to change the size of the square? You would have to replace each occurrence of "1" with the
new size. This is awkward—you might miss an occurrence, at least if your program were more complicated. It
would be better to introduce a variable s to control the length of the side of the square.

Variables in PostScript can be just about any sequence of letters and symbols. They are defined and assigned
values in statements like this

/s 1 def

which sets the variable s to be 1.

• After a variable is defined in your program, any occurrence of that variable will be replaced by what it was
defined to be.

We shall see later that this is not quite true in certain local environments.

Definition and assignment in PostScript look the same, and differ only in technical ways.

Using a variable for the side of the square, the new program would look like this (I include only the interesting
parts from now on):

/s 1 def

newpath

0 0 moveto

s 0 rlineto

0 s rlineto

s neg 0 rlineto

closepath

stroke

One new thing to note here is the command neg, which replaces anything on the top of the stack by its negative.
This code is indeed a bit more flexible than the original, because if you want to draw a square of different size
you would have to change only one line.

Suppose you wanted to draw two squares, one of them at (0, 0) and the other at (0,−1) (that is to say, just below
the first). Most straightforward:

/s 1 def

newpath

0 0 moveto

s 0 rlineto

0 s rlineto

s neg 0 rlineto

closepath

stroke

0 -1 translate

newpath

0 0 moveto

s 0 rlineto

0 s rlineto

s neg 0 rlineto

closepath

stroke



Evolution of a program 3

showpage

which just repeats the part of the program which actually draws the square, of course. Recall that translate
shifts the origin of the user’s coordinate system in the current units.

Now the page looks like this:

2. Procedures in PostScript

Repeating the code to draw the square is somewhat inefficient—this technique will lead to a lot of text pasting
and turns out to be very prone to error. It is both more efficient and safer to use a PostScript procedure to repeat
the code for you.
• A procedure in PostScript is an extremely simple thing—it is just any sequence of commands, enclosed in

brackets {. . .}.

You can assign procedures to variables just as you can assign any other kind of data. When you insert this variable
in your program, it is replaced by the sequence of commands inside the brackets. In this way, you do things in
two steps:

(1) You define a procedure called draw-square in the following way:

/draw-square {

newpath

0 0 moveto

s 0 rlineto

0 s rlineto

s neg 0 rlineto

closepath

stroke

} def

The effect of this is that after you have made this definition, whenever you have the expression draw-square

in your program, PostScript will simply substitute the lines in between the curly brackets { and }. The effect of
calling a procedure in PostScript is always this sort of straightforward text substitution.

(2) Then you call the procedure when you need it. In this case, the new commands on the page will include the
above definition, and also this:



Evolution of a program 4

draw-square

0 -1 translate

draw-square

Of course if we have done things correctly, the page looks the same as before. But we can now change it easily by
mixing several translations and calls to draw-square like this:

draw-square

-1 -1 translate

draw-square

1 -1 translate

draw-square

to get this:

3. Keeping track of where you are

In the lines of PostScript above, you can easily forget exactly where you are with all those translations. What you
might do is translate back again after each translation and drawing operation to restore the original coordinates.
But this would become complicated later on in your work, when you will perform several changes of coordinates
and it will be difficult to figure out how to invert them. Instead, you can get PostScript to do the work of
remembering where you are. It has a pair of commands that help you do the job easily: gsave saves the current
coordinate system somewhere (together with a few other things like the current line width) and grestore brings
back the coordinate system you saved with your last gsave.
• The commands gsave and grestore must be used in pairs!

In this scheme we could write

draw-square

gsave

-1 -1 translate

draw-square

grestore



Evolution of a program 5

1 -1 translate

draw-square

to get

To be a bit more precise, gsave saves the current graphics state and grestore brings it back. The graphics state
holds data about coordinates, line widths, the way lines are joined together, the current color, and more—in effect
everything that you can change easily to affect how things are drawn. You might recall that we saw gsave and
grestore earlier, where we used them to set up successive pages correctly, enclosing each page in a pair of gsave
and grestore.

Incidentally, it is usually—but not always—a bad (very bad) idea to change anything in the graphics state in the
middle of drawing a path. Effects of this bad practice are often unintuitive, and therefore unexpected. There
are definite exceptions to this rule, but one must be careful. The problem is to know what parts of the graphic
state take effect in various commands. The principal exceptions use translate and rotate to build paths
conveniently. For example, the following sequence builds a square.

1 0 moveto

90 rotate

1 0 lineto

90 rotate

1 0 lineto

90 rotate

1 0 lineto

90 rotate

1 0 lineto

The commands rotate etc. change the coordinate system in a figure, and the commands lineto etc. use the
coordinate system current when they are applied to build a path in physical coordinates.

4. Local variables

The definition we have made of the procedure draw-square has a variable s in it. The variable s is not defined
in the procedure itself, but must be defined before the procedure is used. This is awkward—if you want to draw
squares of different sizes, you have to redefine s each time you want to use a new size.



Evolution of a program 6

For example, if we write

/s 2 def

draw-square

we get

There are a few tricky things to keep in mind here. (1) When I put s in the program it replaces that occurrence
of s by the current value of s, which is 2. This again illustrates how def works by substitution. (2) The line
s neg just puts −s on the stack, and does not change the value of the variable s. The only way to change the
value of s is to redefine it. (3) The variable s is used in the procedure, but it does not have to be defined until
the procedure is actually used. (4) The phrase /s 2 def assigns the value of 2 to s. This use of def might seem
quite a bit different from its use to define procedures, but in fact it is not. In both cases it effects a straightforward
substitution when the variable defined is put into the program. In the first case the variable draw-square is
defined to be a procedure, in the second s is defined to be the number 2. (5) The variable s is a global variable. It
can be used anywhere in the program after it has been defined. If you called draw-square before you defined
s you would get an error message. (6) The def command requires that exactly one item separates the word def

from the name of the variable being defined. Thus /s 2 3 def is not acceptable. If for some reason you want s
to be the sequence of numbers 2 3 you would write /s {2 3} def. This is OK because {2 3} is a procedure
which just places 2 and 3 on the stack in succession.

Let me repeat: If you want to assign a new value to a variable you have to define it over again.

It is awkward to have to assign a value to s every time we want to draw a square. It would be much better
if we could just type something like 2 draw-square to do the job. We can in fact do this, by doing a bit of
stack manipulation inside the procedure itself. The command exch exchanges the top two items on the stack.
Therefore 2 /s exch def has exactly the same effect as /s 2 def, since in the first version the effect of exch is
to change 2 /s to /s 2 and then add def. Thus the lines

/draw-square {

/s exch def

newpath

0 0 moveto

s 0 rlineto

0 s rlineto

s neg 0 rlineto

closepath

stroke



Evolution of a program 7

} def

2 draw-square

do exactly what we want. The important point is that the procedure itself now handles the assignment of a value
to s, and all we do is pass the value of s to the procedure as an argument to it by putting it on the stack before
the procedure is called. If you know how programming language compilers work, you will recognize this as
what programming languages do to pass arguments. The difference is that PostScript does it in the open, and
effectively forces you to do a bit more work yourself. If you wanted to draw rectangles with different width and
height, you would pass two arguments in a similar way:

/draw-rectangle {

/h exch def

/w exch def

newpath

0 0 moveto

w 0 rlineto

0 h rlineto

w neg 0 rlineto

closepath

stroke

} def

2 3 draw-rectangle

draws a rectangle of width 2 and height 3. Notice that the stuff on the stack is removed in the order opposite to
that in which you placed it there.

Another problem is possible name conflicts. If you have a large program with lots of different figures being drawn
in various orders, you might very well have several places where you use w and h with different meanings. This
can cause a lot of trouble. The way around this is a technique in PostScript that I suggest you use without
trying to understand too much about it in detail. We want the variables we use in a procedure to be local to that
procedure, so that assignments we make to them inside that procedure don’t affect other variables with the same
name outside the procedure. To do this we add some lines to the procedure:

/draw-rectangle {

2 dict begin

/h exch def

/w exch def

newpath

0 0 moveto

w 0 rlineto

0 h rlineto

w neg 0 rlineto

0 h neg rlineto

closepath

stroke

end

} def

2 3 draw-rectangle

There are exactly two new lines, in fact, one at either end of the procedure. The line 2 dict begin sets up a
local variable mechanism, and end restores the original environment. The 2 is in the statement because we are
defining 2 local variables.
• You should set up a local variable mechanism in all procedures in which you make variable definitions.



Evolution of a program 8

The only tricky thing to be aware of is that all variables defined within this pair will be local variables, so that it
is impossible to change the value of global variables within them. It is not usually a good idea to redefine global
variables within a procedure, anyway. It is only slightly too strong to say that you should never assign a value to
a global variable inside a PostScript procedure. Again: begin and end have to come in pairs. If they don’t, the
effect will be that a certain block of space in the computer will fill up. You might get away with it for a while, but
unless you are careful sooner or later some awful error is bound to occur because of this problem. Another good
rule to follow is that if you change coordinates inside a procedure, say in order to build a path, you should restore
the original coordinates before it exits—unless the explicit purpose of the procedure is to change coordinates.
The general principle is that procedures should have as few side effects as possible, and those side effects should
always be explicit.

At any rate, don’t worry too much about exactly what is going on here. Just copy the pattern without thinking
about it. The 2 in 2 dict begin could have been 3 or 4 or 20, but it does have to be at least as large as the
number of variables you are about to define.

5. A final improvement

I want to mention here a subtle but valuable point about procedures. It is only rarely a good idea in PostScript to
do any actual drawing inside a procedure. This is part of the general principle that the side effects of procedures
ought to be severely restricted. Instead, it is usually a good idea to use procedures to build paths without drawing
them. Furthermore, it is always a good idea to tell in a comment what you have to do to use a procedure, and
what its effect is. Thus

% Builds a rectangular path with

% first corner at origin.

% On stack at entry:

% width height

/rectangle {

2 dict begin

/h exch def

/w exch def

0 0 moveto

w 0 rlineto

0 h rlineto

w neg 0 rlineto

0 h neg rlineto

closepath

end

} def

newpath

2 3 rectangle

stroke

is the preferable way to use a procedure to draw rectangles. This way you can fill them or clip them as well as
stroke them. (We shall meet clipping later.) You can also link paths together to make more complicated paths.


