Notes on the Knapp-Zuckerman theory

The point of these notes is to redefine some of their concepts in terms of the L-group. I observe, however,
that it is best and indeed essential for further applications that their results be formulated for reductive groups
rather than just for simply-connected semi-simple groups. I use the notation of CRRAG (On the classification

of representations of real algebraic groups) modified sometimes according to Borel’s suggestions.

Since we are dealing with tempered representations we start from ¢ : W¢/r — *G with image which is
essentially compact. We suppose ¢ defines an element of ®(G). Choose a parabolic £ P in ©'G which is minimal
with respect to the property that o(W¢/r) C Lp. L' P defines P and M. Let p (with character ©) be one of the
representations of M associated to ¢. Thus pell,,, if ¢ is regarded as taking W /g to LM. Ttis

Ind(G, P, p)

that Knapp-Zuckerman study.

They define W on p. 3, formula [2]. We want another definition. For this we observe that QLTO LGY).
Here T' is a C'SG (Cartan subgroup) of M. We want to regard W as a subgroup of the latter group. We may
assume, along the lines of CRRAG that @(CX) C T, that p(W¢ /R) normalizes LT, and that LT C LM, a

chosen Levi factor of £ P.

LEMMA 1. W is the quotient Norm (*T)N Cent o(Wc,r)/"T%N Cent (W r), the normalizer and

centralizer being taken in “GO.

Let {1,0} be 8(C/R) so that W g is generated by C* and o with 0> = —1. As on pages 48 and 49 of
CRRAG with M replacing G the homomorphism ¢ is defined by p, v with v = ¢(o)u and by Ag. If w in
Qgr(T, G) normalizes M then

WeW <= wp ~ p <= wi = wip, whg = wiAgmod (X, + (1 — p(0)) (* X, ® C))
with wy € Qr(T, M) and * X, = Hom (GL(1)), “T. Replace w by w; *w. Since w normalizes M,

p(0)w = wp(o)

on X, and

W = pE= wp = pwv = v < wp(z)w forzeCx

if w e GO represents w. We write

Epr =0 x WC/R
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and let

plo)=axo

with

N (a) _ e27ri()\o.,/\v).

By the first paragraph on p. 37 of Problems in the theory of automorphic forms we may choose w so that

wo = ow. But this is the wrong choice.

Replace w by bw then
we(o)w™ = o(b)b tabo(b) ™! x 0 =a x 0 = ¢(0).

In other words this new choice of w satisfies

we(v)w™ " = p(v) YveWg g.
Since weQg (T, M) and wy = p imply that w = 1 we have found

W < Norm (YT°) N Cent @(WC/R)/LTO N Cent o(Wg/R)-

To obtain the full lemma we have only to show that if w lies in Norm (?7°) N Cent o(W¢ /R) then the
corresponding element of the Weyl group stabilizes M and lies in Qg (T, G). It stabilizes “ M because «" is a root

of M if and only if p(0)a¥ = —a". Hence it stabilizes M. By Lemma 5.2 of Shelstad’s thesis
W= wijws
withwy € Qo(T, M), w2 e Qr(T, G). Then
wp = p = wl_lu = wzu,wflv = wzv,wl_l)\o = wa .
Another lemma of Shelstad implies that wy € Qg (T, M). Hence

weQr(T,G).

The advantage of introducing the L-group appears immediately when Knapp’s R-group is discussed. Let S

be the centralizer of (W /R) in G0 and S the connected component.
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LEMMA 2. If G is semi-simple and simply-connected then the R-group is S/S°.

Let “t be the Lie algebra of “T and set
By = Iy, 4+ 5t

where “t, and “t_ are the +1 and -1 eigenspaces for (o). I claim that Zt, which certainly lies in s, the Lie

algebra of SY, is in fact a Cartan subalgebra of SV. Indeed
5 C My + S av)=(rav)=0CXav.
If (1, 0V) = (v,a") = 0 then oV cannot be a root of L7 in L' M. Hence
p(o)a’ # —a”

and o is not 0 on “t, . The assertion follows.

We may indentify Hom(*t, C) with t ® C as a &(C/R)-module if t is the Lie algebra of T'. If &V is a root of
LTYin LGO with p(o)a” # —aV set

AoV = (Lt, + COZV)L.

Then G, v the centralizer of a,v in G is defined over R and M is the Levi factor of a maximal PSG of G,v. Let

u(p, ") be the value of the Plancherel measure for
Ind ((;’Otv (R)v M(R)v p)

Let
Xov ={B"|p(0)B" # —BY,Gav = Gav }.

The centralizer of “t; is

LtJr =+ Ew(a)av__av CX v

and this is the Lie algebra of M. Moreover
S/8% ~ Normg (“t; )/ Normgo (“t,).
If we Normg (£t ) then w normalizes £t and we have

Normg (“t;)/FT, ~W.

The lemma and indeed more will be established once the following facts are proved. They will be proved

for any G.
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1) dims,v = dim((ZﬁvExav CXﬁv) ﬂs) <1.

(ii) Itisequalto1ifand only if u(p,a¥) = 0.
(iii)  Ifitis one then s,v defines a root space of It in t. The corresponding reflection in “t. is the same as that
defined by the real root of T'in G v.

There are a number of possibilities to consider.

Y

(@) X,v consists of a single element. Then ¢(0)a¥ = o and «, the corresponding root of T, is real. Since

op=v, {p,av) = (r,aV)and dims,v = 1 if and only if (4, ") = 0 and
(p(O’)Xav = Xav.

Certainly T'(R) is not fundamental. According to the formula on p. 141 of Harish-Chandra’s preprint
Harmonic analysis III, p1(p, o) is 0 if and only if

(-1
2

Vo =0 and (Oax (V) + 00 (v71)) # 1.

Now
Vo = {p, V).

Also 5.+ is now of dimension one and

Here y is associated to ¢ : Wg/r — LM as on p. 50 of CRRAG and if the definition of a coroot is taken into

account
v=a’(-1).
Thus (cf. p. 51 of CRRAG)
X(a\/ (71)) _ e27ri()\o.,av) )
Apologies are necessary for this phase of the discussion but the transition from Harish-Chandra’s notation to that
used in CRRAG is clumsy.
On the other hand

plo)=axo

and

p(0) Xav = 200 (0) (Xav)
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if o'(0) = a’ x 0, a’€* Myer, a=ra'eP TP, The assertion (ii) will be verified if we show that

Now, by p. 122 of Harmonic Analysis I1I
Po = (pav ) a\/>
if pov is one-half the sum of the positive roots of G, v. But in the present circumstances the derived algebra of

gov is a direct sum because oV is perpendicular to all roots of G,v except . Thus

1
{pa,a) = 5(04,04\/) =1.

Moreover a¥ must be a simple root and so by the definition of M

¢'(0)(Xav) = 0(Xav) = 1.

The assertion (ii) follows. Since the reflections corresponding to « and " are the same, the assertion (iii) does

also.
(b) Suppose p(c)a” = o and 8V different from " lies in X,v.
(i) Suppose
(1, 8%) = (v, 87) = 0.
Then
(1, p(0)B") = (v,0(0)BY) = 0.

Since ¢(0)3Y lies in the span of {«¥, 3V} and is different from 3V, both p and v vanish on this two-dimensional
space. As a consequence there are no roots 7" on it orthogonal to o". For then ¢(co)vy" would be —y" and as a

consequence

(u,7Y) # 0.

This leaves only

$(0)B" a

B\/

of type As.

I claim next that if v lies in X,v and is defferent from ", 3V, and ¢(c)3Y then either (u,vY) # 0 or
(v,7Y) # 0. If not, consider all roots in the span of {«", 3",~"}. They form a root system of rank 3 on which

©(0) acts. If § lies in this system then (u, d") = (v,6Y) = 0s0 p(0)d" # —&". As a consequence

8 +p(0)8Y =aa¥ a#0
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and

{6¥{a,67) > 0}

defines a system of positive roots stable under ¢(c). Let o, a3, ay be the simple roots. They are permuted

amongst themselves by ¢(o). Thus by a suitable numbering

Then

This is a contradiction.

Also we may take

and

Thus
Sqv = C(Xﬁv + @(U)Xﬁv)
has dimension 1. Since

(1, 8"y = (A +iv)(Hp),

the right side conforming to Harish-Chandra’s notation, the measure u(p, ") is certainly zero. The reflection

defined by s is clearly correct on Fi, .

(il) Suppose that for every 3V different from ¥ in X v

(1,8) £ 0 or (v, 3") £0.

Then dims,v = 1if and only if
(1, av> =0, (o) Xav = Xav.

Again the first condition is equivalent to v, = 0. We have to show that when this is so then the second is

equivalent to

(=1)Pe -1
5 (ax(7) +oax(v"7)) # 1.
Let
SD(U)XON = )\Xav.
We show that
(71)&1

2 (Ua* ('Y) + 0gx (771)) =-A
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This is enough, for A = £1. As before

Tar (V) = 0gr (1) = 2P0

and

() Xav = —(=1)Pav2) X .
if ¢’(o) is defined as before. What we must do is show that

¢ (0)(Xov) = —(=1)Pav 2 X 0.

This is a statement about a reductive group G,v and a Levi factor M of a maximal parabolic, M and G both
having compact C'SG's. It is not bound to the present situation and may be proved by induction on the rank of
Gov. Let B8Y be the largest root of one of the simple factors of L Mo, and introduce as, a; as on p.- 46 of CRRAG.

We may take @’ = asay. If p/ is the analogue of p,v for the roots perpendicular to 3 then by induction
ay X o0(X,v) = —(71)<pl"°‘v>Xav
What we have to do is show that
as(Xav) = (—1) Xov, €= %me# (y,a¥).

Suppose v > 0, (v, 8Y) #0, (y,a") # 0 and 7" is not in plane spanned by ¥, 3¥. Then:
1) 7Y = asyY = v = azy = (v, 3") = 0 impossible
2)yY = p(o)yY = 7Y = £a" impossible
3) 7Y = asp(0)yY = 7V in plane of a¥, 5Y because (a¥, 3¥) = 0. Thus 7, az7, ¢(0)7, azp(c)y are distinct and
positive. Since

(v,0") = {azy,a") = (p(0)y,0”) = {azp(0)v, ")

the sum of the four of them even after division by 2 is even and may be dropped from the exponent. So may
those (v, ") which are 0. We confine ourselves to v with v in the plane of oV, 5.

The possibilities are as follows.

A) No roots except +a, £3" in the plane. Then exponent is 0 and

ag(Xav) = Xav.
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B)
- d/’ ,
1 v 1 y
52:(7’04 > = 5(&,0& > =1, a2(Xav) = —Xgyv
@)
BY 8
1
§E<’y’av> = <a,a\/> = 27 a2(XaV) = Xav
D)

1
§E<y,av> =2(a,a") =4, ax(Xov) = Xov
E) The roles of o, oY and 3, 3" are reversed

1
§E<’Yaav> = <a7av> =2, GQ(XQV) = Xqv.

All that is claimed in A) through E) is easy to check. Finally it is clear that the reflection defined by s, is
that defined by « or a”.
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i) Suppose that ¢(0)3Y # Y forall ¥ in X,v. Then 8Y + ¢(0)B" is not a root, nor is

B+ ¢(0)BY
5 :

(1) Suppose that (u, a") = (v,a¥) = 0. Then @ — p(c)a" is not a root and (", p(c)a") = 0. Since a¥

and (o) have the same length, the root diagram of the plane spanned by a", (o) is

I claim that if 8V lies in X,v but not in this plane then either (i, 3") = 0 or (v, 3") = 0. Otherwise in the

three-dimensional plane spanned by ¥, ¢(c0)a, Y, ¢(0)3Y we have a root system and
{(v'I(v, e +p(0)a”) = 0}

is a set of positive roots, for
{r, 0 +p(0)a”)

\

is never 0, because if it were then p(c)yY = —Y. Since (u,7Y) = (v,7") = 0 this is impossible. Then ¢(c)

permutes the three simple roots amongst themselves, and leaves one fixed. This is a contradiction. Thus
50 = C(Xov + p(0)Xav)

has dimension one. Since 7" is fundamental in G v, the formula on p. 97 of Harmonic analysis III shows that

u(p,@¥) = 0. The three assertions follow again.

(ii) Suppose that for any 3" in X,v either (u, 3") # 0 or (v, ") # 0. Then s,v = 0. By the same formula

in Harmonic analysis I11,

(p, ) #0.

Lemma 2 is now completely proved. I should observe, for it will remove a confusion that could otherwise

arise, that

—(u,a¥) = (v,a”)

for any aV.
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It is also possible to give Zuckerman’s proof that the R-group is a sum of Z»’s in the above context. Let

Norm (“ty) bet the set of elements of Normg (Lt, ) that take positive roots of Sy to positive roots. Then
R=S/S° ~ Norm} (“ty)/"t,.

Let

51 = Ly 4+ E(,LL,O(\/):(U,QV):OCXOZV
The elements of Norm (Lt ) take s1 to itself. Let @ be the operator

1

—ERT
|R|

on t ® C. Since the centralizer of ¢(C™) is connected, S lies in the connected group S with Lie algebra s;. Thus
by Chevalley’s theorem R is contained in the group generated by the reflections associated to the roots a¥ of s;
for which Qa” = 0.

If ¥ is a root of 51 then p(0)a” # —aV. Suppose p(o)a” # aV.
Then

Xaov + (p(O’)Xav #0

and lies in 5. Thus oV restricted to “t, defines a root of s. Since the elements of r stabilize “t, and each r takes

positive roots of “t. in s to positive roots,

QaY # 0.

Thus if oV is a root of 5; then

Qa¥ =0= p(o)a’ =a.

Moreover oV cannot be a root of s and therefore

(,D(O‘)Xav = —Xav.

Finally if QoY = 0, Q3Y = 0 then oV + 8V is not a root because p(0)Xovigv = p(0)[Xav, Xpv] =

[—Xav, —Xpgv] = Xqvipv and oY + 3¥ would have to be a root of s. This is inconsistent with
Q(a” + %) =0.

The set of positive a" for which (u, ") = (v,a¥) = 0 and Qa” = 0 is the strongly orthogonal system

needed for Zuckerman’s argument.



