
Notes on the Knapp-Zuckerman theory

The point of these notes is to redefine some of their concepts in terms of the L­group. I observe, however,

that it is best and indeed essential for further applications that their results be formulated for reductive groups

rather than just for simply­connected semi­simple groups. I use the notation of CRRAG (On the classification

of representations of real algebraic groups) modified sometimes according to Borel’s suggestions.

Since we are dealing with tempered representations we start from ϕ : WC/R → LG with image which is

essentially compact. We suppose ϕ defines an element of Φ(G). Choose a parabolic LP in LG which is minimal

with respect to the property that ϕ(WC/R) ⊆ LP . LP defines P andM . Let ρ (with character Θ) be one of the

representations ofM associated to ϕ. Thus ρǫΠϕ, if ϕ is regarded as takingWC/R to
LM . It is

Ind(G, P, ρ)

that Knapp­Zuckerman study.

They define W on p. 3, formula [2]. We want another definition. For this we observe that Ω(LT 0, LG0).

Here T is a CSG (Cartan subgroup) of M . We want to regard W as a subgroup of the latter group. We may

assume, along the lines of CRRAG that ϕ(CX) ⊆ LT , that ϕ(WC/R) normalizes LT , and that LT ⊆ LM , a

chosen Levi factor of LP .

LEMMA 1. W is the quotient Norm (LT )∩ Cent ϕ(WC/R)/LT 0 ∩ Cent ϕ(WC/R), the normalizer and

centralizer being taken in LG0.

Let {1, σ} be G(C/R) so that WC/R is generated by C
× and σ with σ2 = −1. As on pages 48 and 49 of

CRRAG with M replacing G the homomorphism ϕ is defined by µ, ν with ν = ϕ(σ)µ and by λ0. If ω in

ΩR(T, G) normalizesM then

ωǫW ⇐⇒ ωρ ∼ ρ ⇐⇒ ωµ = ω1µ, ωλ0 ≡ ω1λ0 mod (LX∗ + (1 − ϕ(σ)) (LX∗ ⊗ C))

with ω1 ǫ ΩR(T, M) and LX∗ = Hom(GL(1)), LT . Replace ω by ω−1
1 ω. Since ω normalizesM ,

ϕ(σ)ω = ωϕ(σ)

on LX∗ and

ωµ = µ ⇐⇒ ωµ = µ, ω v = v ⇐⇒ w ϕ(z)w for z ǫ C
×

if w ǫ LG0 represents ω. We write

LM = LM0 × WC/R
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and let

ϕ(σ) = a × σ

with

λ∨(a) = e2πi〈λ0,λ∨〉.

By the first paragraph on p. 37 of Problems in the theory of automorphic forms we may choose w so that

wσ = σw. But this is the wrong choice.

ω(a) = σ(b)b−1a.

Replace w by bw then

wϕ(σ)w−1 = σ(b)b−1abσ(b)−1 × σ = a × σ = ϕ(σ).

In other words this new choice of w satisfies

wϕ(v)w−1 = ϕ(v) ∀vǫWC/R.

Since ωǫΩR(T, M) and ωµ = µ imply that ω = 1we have found

W →֒ Norm(LT 0) ∩ Centϕ(WC/R)/LT 0 ∩ Centϕ(WC/R).

To obtain the full lemma we have only to show that if w lies in Norm (LT 0) ∩ Centϕ(WC/R) then the

corresponding element of theWeyl group stabilizesM and lies inΩR(T, G). It stabilizes LM because α∨ is a root

of LM if and only if ϕ(σ)α∨ = −α∨. Hence it stabilizesM . By Lemma 5.2 of Shelstad’s thesis

ω = ω1ω2

with ω1 ǫ ΩC(T, M), ω2 ǫ ΩR(T, G). Then

w ϕ = ϕ ⇒ ω−1
1 µ = ω2 µ, ω−1

1 v = ω2v, ω−1
1 λ0 ≡ ω2λ0.

Another lemma of Shelstad implies that ω1 ǫ ΩR(T, M). Hence

ω ǫΩR(T, G).

The advantage of introducing the L­group appears immediately when Knapp’s R­group is discussed. Let S

be the centralizer of ϕ(WC/R) in LG0 and S0 the connected component.
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LEMMA 2. If G is semi-simple and simply-connected then the R-group is S/S0.

Let Lt be the Lie algebra of LT and set

Lt = Lt+ + Lt.

where Lt+ and
Lt− are the +1 and ­1 eigenspaces for ϕ(σ). I claim that Lt+ which certainly lies in s, the Lie

algebra of S0, is in fact a Cartan subalgebra of S0. Indeed

s ⊆ Lt+ + Σ〈µ,α∨〉=〈ν,α∨〉=0CXα∨ .

If 〈µ, α∨〉 = 〈ν, α∨〉 = 0 then α∨ cannot be a root of LT in LM . Hence

ϕ(σ)α∨ 6= −α∨

and α∨ is not 0 on Lt+. The assertion follows.

We may indentify Hom(Lt, C) with t ⊗ C as a G(C/R)­module if t is the Lie algebra of T . If α∨ is a root of

LT 0 in LG0 with ϕ(σ)α∨ 6= −α∨ set

aα∨ = (Lt− + Cα∨)⊥.

Then Gα∨ the centralizer of aα∨ in G is defined over R andM is the Levi factor of a maximal PSG of Gα∨ . Let

µ(ρ, α∨) be the value of the Plancherel measure for

Ind (Gα∨ (R), M(R), ρ).

Let

Xα∨ = {β∨|ϕ(σ)β∨ 6= −β∨, Gβ∨ = Gα∨}.

The centralizer of Lt+ is

Lt+ + Σϕ(σ)α∨=−α∨CXα∨

and this is the Lie algebra of LM . Moreover

S/S0 ≃ NormS (Lt+)/ NormS0(Lt+).

If wǫ NormS(Lt+) then w normalizes Lt and we have

NormS (Lt+)/LT+ ≃ W.

The lemma and indeed more will be established once the following facts are proved. They will be proved

for any G.
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(i) dim sα∨ = dim ((Σβ∨ǫXα∨CXβ∨) ∩ s) ≤ 1.

(ii) It is equal to 1 if and only if µ(ρ, α∨) = 0.

(iii) If it is one then sα∨ defines a root space of Lt+ in t. The corresponding reflection in Lt+ is the same as that

defined by the real root of T in Gα∨ .

There are a number of possibilities to consider.

(a) Xα∨ consists of a single element. Then ϕ(σ)α∨ = α∨ and α, the corresponding root of T , is real. Since

σµ = ν, 〈µ, α∨〉 = 〈ν, α∨〉 and dim sα∨ = 1 if and only if 〈µ, α∨〉 = 0 and

ϕ(σ)Xα∨ = Xα∨ .

Certainly T (R) is not fundamental. According to the formula on p. 141 of Harish–Chandra’s preprint

Harmonic analysis III, µ(ρ, α∗) is 0 if and only if

να = 0 and
(−1)ρα

2
(σa∗(γ) + σa∗(γ−1)) 6= 1.

Now

να = 〈µ, α∨〉.

Also sa∗ is now of dimension one and

σa∗(γ) = σa∗(γ−1) = χ(α∨(−1)).

Here χ is associated to ϕ : WC/R → LM as on p. 50 of CRRAG and if the definition of a coroot is taken into

account

γ = α∨(−1).

Thus (cf. p. 51 of CRRAG)

χ(α∨(−1)) = e2πi〈λ0,α∨〉.

Apologies are necessary for this phase of the discussion but the transition fromHarish­Chandra’s notation to that

used in CRRAG is clumsy.

On the other hand

ϕ(σ) = a × σ

and

ϕ(σ)Xα∨ = e2πi〈λ0,α∨〉ϕ′(σ)(Xα∨ )
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if ϕ′(σ) = a′ × σ, a′ǫLMder, a
−1a′ǫLT 0. The assertion (ii) will be verified if we show that

ϕ′(σ)(Xα∨) = −(−1)ραXα∨ .

Now, by p. 122 of Harmonic Analysis III

ρα = 〈ρα∨ , α∨〉

if ρα∨ is one­half the sum of the positive roots of Gα∨ . But in the present circumstances the derived algebra of

gα∨ is a direct sum because α∨ is perpendicular to all roots of Gα∨ except±α∨. Thus

〈ρα, α∨〉 =
1

2
〈α, α∨〉 = 1.

Moreover α∨ must be a simple root and so by the definition of LM

ϕ′(σ)(Xα∨ ) = σ(Xα∨) = 1.

The assertion (ii) follows. Since the reflections corresponding to α and α∨ are the same, the assertion (iii) does

also.

(b) Suppose ϕ(σ)α∨ = α∨ and β∨ different from α∨ lies in Xα∨ .

(i) Suppose

〈µ, β∨〉 = 〈ν, β∨〉 = 0.

Then

〈µ, ϕ(σ)β∨〉 = 〈ν, ϕ(σ)β∨〉 = 0.

Since ϕ(σ)β∨ lies in the span of {α∨, β∨} and is different from β∨, both µ and ν vanish on this two­dimensional

space. As a consequence there are no roots γ∨ on it orthogonal to α∨. For then ϕ(σ)γ∨ would be −γ∨ and as a

consequence

〈µ, γ∨〉 6= 0.

This leaves only

..
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β∨

α∨
ϕ(σ)β∨

of type A2.

I claim next that if γ∨ lies in Xα∨ and is defferent from α∨, β∨, and ϕ(σ)β∨ then either 〈µ, γ∨〉 6= 0 or

〈ν, γ∨〉 6= 0. If not, consider all roots in the span of {α∨, β∨, γ∨}. They form a root system of rank 3 on which

ϕ(σ) acts. If δ∨ lies in this system then 〈µ, δ∨〉 = 〈ν, δ∨〉 = 0 so ϕ(σ)δ∨ 6= −δ∨. As a consequence

δ∨ + ϕ(σ)δ∨ = aα∨ a 6= 0
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and

{δ∨|〈α, δ∨〉 ≥ 0}

defines a system of positive roots stable under ϕ(σ). Let α∨
1 , α

∨
2 , α

∨
3 be the simple roots. They are permuted

amongst themselves by ϕ(σ). Thus by a suitable numbering

a∨
1 = α∨ a∨

3 = ϕ(σ)a∨
2 .

Then

aα∨ = α∨
2 + a∨

3 .

This is a contradiction.

Also we may take

Xα∨ = [Xβ∨ , ϕ(σ)Xβ∨ ]

and

ϕ(σ)Xα∨ = −Xα∨ .

Thus

sα∨ = C(Xβ∨ + ϕ(σ)Xβ∨)

has dimension 1. Since

〈µ, β′〉 = (λ + iν)(Hβ),

the right side conforming to Harish­Chandra’s notation, the measure µ(ρ, α∨) is certainly zero. The reflection

defined by sα∨ is clearly correct on Ft+ .

(ii) Suppose that for every β∨ different from α∨ in Xα∨

〈µ, β∨〉 6= 0 or 〈ν, β∨〉 6= 0.

Then dimsα∨ = 1 if and only if

〈µ, α∨〉 = 0, ϕ(σ)Xα∨ = Xα∨ .

Again the first condition is equivalent to να = 0. We have to show that when this is so then the second is

equivalent to
(−1)ρα

2
(σa∗(γ) + σa∗(γ−1)) 6= 1.

Let

ϕ(σ)Xα∨ = λXα∨ .

We show that
(−1)ρα

2
(σa∗(γ) + σa∗(γ−1)) = −λ.
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This is enough, for λ = ±1. As before

σa∗(γ) = σa∗(γ−1) = e2πi〈λ0,α∨〉

and

ϕ(σ)Xα∨ = −(−1)〈ρα∨ ,α∨〉Xα∨ .

if ϕ′(σ) is defined as before. What we must do is show that

ϕ′(σ)(Xα∨ ) = −(−1)〈ρα∨ ,α∨〉Xα∨ .

This is a statement about a reductive groupGα∨ and a Levi factorM of a maximal parabolic,M andG both

having compact CSG′s. It is not bound to the present situation and may be proved by induction on the rank of

Gα∨ . Let β∨ be the largest root of one of the simple factors of LMder and introduce a2, a1 as on p. 46 ofCRRAG.

We may take a′ = a2a1. If ρ
′ is the analogue of ρα∨ for the roots perpendicular to β∨ then by induction

a1 × σ(Xα∨) = −(−1)〈ρ
′,α∨〉Xα∨

What we have to do is show that

a2(Xα∨) = (−1)ℓXα∨ , ℓ =
1

2

∑
〈γ,β∨〉6=0

γ>0

〈γ, α∨〉.

Suppose γ > 0, 〈γ, β∨〉 6= 0, 〈γ, α∨〉 6= 0 and γ∨ is not in plane spanned by α∨, β∨. Then:

1) γ∨ = a2γ
∨ ⇒ γ = a2γ ⇒ 〈γ, β∨〉 = 0 impossible

2) γ∨ = ϕ(σ)γ∨ ⇒ γ∨ = ±α∨ impossible

3) γ∨ = a2ϕ(σ)γ∨ ⇒ γ∨ in plane of α∨, β∨ because (α∨, β∨) = 0. Thus γ, a2γ, ϕ(σ)γ, a2ϕ(σ)γ are distinct and

positive. Since

〈γ, α∨〉 = 〈a2γ, α∨〉 = 〈ϕ(σ)γ, α∨〉 = 〈a2ϕ(σ)γ, α∨〉

the sum of the four of them even after division by 2 is even and may be dropped from the exponent. So may

those 〈γ, α∨〉which are 0. We confine ourselves to γ with γ∨ in the plane of α∨, β∨.

The possibilities are as follows.

A) No roots except±α∨, ±β∨ in the plane. Then exponent is 0 and

a2(Xα∨) = Xα∨ .
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α

β

α∨

β∨

1

2
Σ〈γ, α∨〉 =

1

2
〈α, α∨〉 = 1, a2(Xα∨) = −Xα∨
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2
Σ〈γ, α∨〉 = 〈α, α∨〉 = 2, a2(Xα∨) = Xα∨
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β∨ β

α∨

α

1

2
Σ〈γ, α∨〉 = 2〈α, α∨〉 = 4, a2(Xα∨) = Xα∨

E) The roles of α, α∨ and β, β∨ are reversed

1

2
Σ〈γ, α∨〉 = 〈α, α∨〉 = 2, a2(Xα∨) = Xα∨ .

All that is claimed in A) through E) is easy to check. Finally it is clear that the reflection defined by sα∨ is

that defined by α or α∨.
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i) Suppose that ϕ(σ)β∨ 6= β∨ for all β∨ in Xα∨ . Then β∨ + ϕ(σ)β∨ is not a root, nor is

β∨ + ϕ(σ)β∨

2
.

(1) Suppose that 〈µ, α∨〉 = 〈ν, α∨〉 = 0. Then α∨ − ϕ(σ)α∨ is not a root and 〈α∨, ϕ(σ)α∨〉 = 0. Since α∨

and ϕ(σ)α∨ have the same length, the root diagram of the plane spanned by α∨, ϕ(σ)α∨ is

......
..............

................
....

........................................

..........
..........

..........
..........
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..........

..........
..........

..........
..........

ϕ(σ)α∨

α∨

I claim that if β∨ lies in Xα∨ but not in this plane then either 〈µ, β∨〉 = 0 or 〈ν, β∨〉 = 0. Otherwise in the

three­dimensional plane spanned by α∨, ϕ(σ)α∨ , β∨, ϕ(σ)β∨ we have a root system and

{γ∨|〈γ, α∨ + ϕ(σ)α∨〉 ≥ 0}

is a set of positive roots, for

{γ, α∨ + ϕ(σ)α∨〉

is never 0, because if it were then ϕ(σ)γ∨ = −γ∨. Since 〈µ, γ∨〉 = 〈ν, γ∨〉 = 0 this is impossible. Then ϕ(σ)

permutes the three simple roots amongst themselves, and leaves one fixed. This is a contradiction. Thus

sα = C(Xα∨ + ϕ(σ)Xα∨ )

has dimension one. Since T is fundamental in Gα∨ , the formula on p. 97 of Harmonic analysis III shows that

µ(ρ, α∨) = 0. The three assertions follow again.

(ii) Suppose that for any β∨ in Xα∨ either 〈µ, β∨〉 6= 0 or 〈ν, β∨〉 6= 0. Then sα∨ = 0. By the same formula

in Harmonic analysis III,

µ(ρ, α∨) 6= 0.

Lemma 2 is now completely proved. I should observe, for it will remove a confusion that could otherwise

arise, that

−〈µ, α∨〉 = 〈ν, α∨〉

for any α∨.
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It is also possible to give Zuckerman’s proof that the R­group is a sum of Z2’s in the above context. Let

Norm+
S (Lt+) bet the set of elements of NormS(Lt+) that take positive roots of S0 to positive roots. Then

R = S/S0 ≃ Norm+
S (Lt+)/Lt+.

Let

s1 = Lt + Σ〈µ,α∨〉=〈ν,α∨〉=0CXα∨

The elements of Norm+
S (Lt+) take s1 to itself. LetQ be the operator

1

|R|
ΣRr

on t ⊗ C. Since the centralizer of ϕ(C×) is connected, S lies in the connected group S1 with Lie algebra s1. Thus

by Chevalley’s theorem R is contained in the group generated by the reflections associated to the roots α∨ of s1

for whichQα∨ = 0.

If α∨ is a root of s1 then ϕ(σ)α∨ 6= −α∨. Suppose ϕ(σ)α∨ 6= α∨.

Then

Xα∨ + ϕ(σ)Xα∨ 6= 0

and lies in s. Thus α∨ restricted to Lt+ defines a root of s. Since the elements of r stabilize
Lt+ and each r takes

positive roots of Lt+ in s to positive roots,

Qα∨ 6= 0.

Thus if α∨ is a root of s1 then

Qα∨ = 0 ⇒ ϕ(σ)α∨ = α∨.

Moreover α∨ cannot be a root of s and therefore

ϕ(σ)Xα∨ = −Xα∨ .

Finally if Qα∨ = 0, Qβ∨ = 0 then α∨ ± β∨ is not a root because ϕ(σ)Xα∨+β∨ = ϕ(σ)[Xα∨ , Xβ∨ ] =

[−Xα∨ ,−Xβ∨] = Xα∨+β∨ and α∨ + β∨ would have to be a root of s. This is inconsistent with

Q(α∨ + β∨) = 0.

The set of positive α∨ for which 〈µ, α∨〉 = 〈ν, α∨〉 = 0 and Qα∨ = 0 is the strongly orthogonal system

needed for Zuckerman’s argument.


